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A Pattern System for
Network Management 

Interfaces
NMI builders and applications developers should find the 

operational benefits of a pattern-based framework called Layla 
a welcomed ally in their efforts.

Network management systems are used to control and monitor the components of

distributed systems like communication networks, where many different subsys-

tems need to collaborate to offer a service. Communication networks are large

dynamic systems, comprising parts from various vendors and evolving over time, with parts get-

ting grafted on and others being removed. Network management is a challenging task that usu-

ally requires remote access to widely distributed information coming from various sources.

Operations have to be performed on numerous system components. Moreover, the access inter-

face to the components can vary greatly, depending on their nature, type, and manufacturer. 

We define a network management interface (NMI) as
the middle layer of a network management system, sit-
uated between the high-level control processes and the
low-level components of the system [12]. The lower
layers, which usually depend heavily on the execution
platform at hand, are not part of the NMI.

Figure 1 illustrates a sample distributed system (net-
work) under management. The system consists of two
workstations communicating through a switch. Each
workstation has a communication port that is attached
to each end of the connection path, and the path itself
is contained in the switch. The management system
includes a management console that has access and con-

trol over all the components of the network through a
symbolic representation provided by the NMI. Note
that the NMI must include a number of communica-
tion stacks to access all the various components.

International standardization bodies have produced
various tools for defining network management sys-
tems and their NMIs. Among the most advanced tools
are the Common Management Information Service
(CMIS) of Open Systems Interconnection (OSI) [12],
and the Simple Network Management Protocol
(SNMP) of the Internet [9]. Whereas CMIS, along
with its protocol for information exchange between
systems CMIP, is based on the object-oriented para-



digm, SNMP uses tables similar to those used in the
relational model of databases. However, SNMP is mov-
ing toward the OO paradigm; its new version
SNMPv2 embodies some notion of inheritance.

In the IGLOO project, we have developed a proto-
type pattern-based framework for NMIs called “Layla.”1

In designing Layla, we wanted to leverage off commer-
cial implementations of standardized network manage-
ment protocols, and came up with a number of wrapper
classes that encapsulate the specific details of any par-
ticular protocol engine. Layla supports OSI NMIs and
includes provisions for the OO nature of CMIS that are
not necessarily found in other protocols for network
management. We have built several NMIs to date using
Layla, in cooperation with Teleglobe Canada Inc., our
main industrial partner.

In Layla’s early development we decided to take an
approach based on design patterns. Aware of their
potential for making architectures easier to modify,

maintain, and reuse, and of their documentation value
[2, 3, 7, 11], we wanted to verify whether these qual-
ities also hold in a domain as complex as NMIs, and in
which way domain-specific aspects would come into
play. A further objective was to organize the system of
patterns that would result from our design in a sys-
tematic and coherent way. The resulting framework
architecture can be described as a heterogeneous sys-
tem of design patterns. The system consists of previ-
ously published, general-purpose patterns, several new
and domain-specific patterns taken from NMI stan-
dards, as well as a couple of basic patterns relevant in
Layla’s application programming interface (API). The
patterns are implemented as a system of C++ classes
that form the framework. The framework encapsulates
to a large extent the underlying communication API,
as shown with the adoption of two different, commer-
cially available APIs.

Many software manufacturers offer packaged solu-
tions for implementing NMIs. Such solutions are often
called APIs. An API typically includes data structures
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Figure 1. Sample network managed by network management system
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How it Works

In a typical network management system, the managed resources are
grouped under an agent application and controlled remotely by a man-
ager application. The agent and the manager use both an underlying
API to communicate with each other and to exchange management
information. Commercially available APIs exhibit limitations that may
be overcome by encapsulating them in an application framework.
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1In Zohar, Layla is an angel in charge of the newly created spirits.



and function prototypes, as well
as a set of precompiled libraries
that implement those func-
tions. A developer can describe
a network management func-
tion in terms of API calls and
implement the NMI by reusing
the code in the libraries (see
“How it Works” for more
details).

Developing an NMI based
on an API usually involves a
number of steps (see Figure 2).
First, the developer must spec-
ify the NMI using the specifi-
cation language(s) supported
by the API. For example, CMIS
uses one language for describing object classes and
relationships (GDMO) and another for the data struc-
tures used by the objects (ASN.1). In contrast, the

SNMP standard uses only one specification language
to describe data structures (ASN.1), and the semantics
are described using plain English. Once the specifica-
tion has been written, an automated tool is used to
map it to a specific programming language, often C.
The tool, typically some sort of compiler, needs to gen-
erate the appropriate data structures and utility func-
tions in the target implementation language. Once
generated, the developer can use these structures and
functions to implement the NMI. The data structures
are used by the application to pass information to the
API. The utility functions are used by the application
to manage those structures, and by the API to transfer

data across process boundaries via the presentation
layer (communication module). The API also com-
prises management protocols for data exchange across
the various computing platforms typically found in
today’s large and heterogenous networks.

Network management APIs are a powerful devel-
opment tool, since they take care of many low-level
communication issues such as connection establish-
ment/release, buffering, synchronization, and type
conversion between different computing platforms.
Still, they exhibit several shortcomings. First, most
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Figure 3. The pattern system of Layla



APIs provide only an interface to the
C language, whereas many NMI
specification languages are object-
oriented, imposing on the developer
a discrepancy of paradigms. Second,
applications are highly dependent
on the output of the specification
compiler, and any changes either to
the initial specification or to the
compilation mechanism may
require major modifications to the
application code, ultimately leading
to serious maintenance problems.
Furthermore, many APIs offer func-
tionality that is not necessarily 
relevant to the NMI under develop-
ment, yet they are often limited to
the lowest common denominator of
the functionalities provided by the
various flavors of NMIs.

We feel these shortcomings are
best addressed by devising an appli-
cation framework to mediate
between the application and the
API. The developer then simply has
to deal with the OO specification of
the NMI and the framework, which
itself is object-oriented, yet com-
prises a procedural kernel for inter-
facing with the API (Figure 2). Also,
a framework encapsulating the underlying API makes
NMIs independent of the API that is actually used.
Furthermore, generated code can be hidden within the
framework, and the framework can be designed such
that it provides minimum but sufficient functionality
for building NMIs, including high-level services. Note
that introducing such an additional framework layer
may lead to performance degradation. Our experience
in the project, however, suggests that with careful
framework design, performance loss can be kept to a
minimum.

For our framework development, Teleglobe supplied
us with two different APIs, both geared toward OSI
NMIs as defined by the CMIS standards [12], and pro-
viding the low-level functionality required. One of
them, used at the beginning of our project, is Base-
WorX from AT&T [1], the other one is DM from
Hewlett Packard (on top of which the current version
1.1 of Layla is built [4]). We have strived for complete
encapsulation of the API into the framework, so the
classes defined for a given NMI can be compiled with
one API or the other, thus making the NMI indepen-
dent of the API that is actually used. However, since the
NMI is dependent on the structures generated by the

specification compiler that comes with the API (see
Figure 2), this encapsulation can never be complete.

The Pattern System of Layla
Figure 3 depicts the pattern system that constitutes
the architecture of the Layla framework. Strategic pat-
terns [11] are placed at the top, and the more generic
but less critical tactical patterns are shown in the
region below the separator line. Arrows stand for use-
relationships, indicating the originating pattern uses
the destination pattern for the functionality men-
tioned on the label of the arrow. (See the “Document-
ing Patterns and Pattern Systems” sidebar for details.) 

Each major task in Layla is described by a design
pattern, many of which come from the literature [3,
10]. This indicates the published design patterns are
indeed expressive and generic enough to be easily
applied to a new application domain. Several tasks and
design solutions that were not design patterns origi-
nated from the constraints imposed by the underlying
network management standards. Since these solutions
are applicable to virtually any network management
system, they can be thought of as NMI-specific, hence
domain-specific design patterns (Manager-Agent,
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Documenting Patterns and 
Pattern Systems

Patterns capture the essence of successful solutions to recurring problems
that arise when building software systems. They are usually documented,
especially when grouped together in a catalog, in a common format, or
template. A popular format is the one suggested by Gamma et al. [3]. The
format consists of: intent, motivation, applicability, structure, participants,
collaborations among participants, consequences, implementation sugges-
tions, known uses, and related patterns.

Patterns should be interwoven in pattern systems [2, 8] that describe how
they are connected and how they complement each other. For some small
and well-known domains, pattern systems have been devised to cover all and
every aspect of importance in the domain, and thus could be called “pattern
languages.” In most other domains, such as NMIs, patterns only cover cer-
tain aspects of software construction. However, as the pattern discipline
matures, more pattern languages are likely to appear.

All new patterns found in Layla have been described using the format of
Gamma et al. [3], and are available, together with further documentation of
Layla, at www.iro.umontreal.ca/labs/gelo/layla/. The individual pattern descrip-
tions comprise numerous hints and references to relevant patterns within and
beyond Layla. The classification by their role (tactical or strategic) and scope
(NMI-specific or general-purpose), together with the description of the inter-
play of the patterns in Layla applications, further describes the pattern system.



Managed Object,
Remote Operation).
Two further tasks
were considered flexi-
ble and generic
enough to be applica-
ble to other fields, and
thus were described as
design patterns, too
(Translator and Inher-
ited Behavior). They
were then circulated
on mailing lists and
generated some interesting feedback from the design
pattern community. (The interaction of the Layla pat-
terns is illustrated in the accompanying sidebar.) 

Manager-Agent Pattern
Imagine a large system of collaborating
components (or resources) that provide a
service, such as a telecommunication net-
work. Such a system is often managed
from a central console that controls all the
components in the system. This console is
typically called a “manager.” It issues
commands to monitor and regulate the
system, and listens to failure alarms. 

The biggest problem in such a system
is to control the complexity of the man-
ager. When attempting to solve this
problem, the developer must deal with a
number of conflicting forces. For one
thing, the manager must be powerful
enough to handle its task, and yet pre-
sent a unified management interface for
the whole system as well as for the sub-
systems thereof. Furthermore, there can
be a large variety of management func-
tions to be performed, increasing the
complexity of the manager. There can
also be an extremely large number of
components to be managed, a setting
that might overload any single manager.
To further complicate matters, the man-
aged components typically come in vari-
ous kinds of management interfaces,
functionalities, and semantics, all of
which must be presented through the
manager interface. Finally, it might be
desirable to have a portion of the system
manage itself automatically, so as to
relieve the load of the overall manager.

The proposed solution is to first iso-
late the management functionalities in
one or more Manager objects that han-
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Layla’s Patterns at Work

Many network protocols such as Xcoop use network management
functions to reserve and activate physical connections. Among the
applications developed for validating the Layla framework, we have
implemented an Xcoop agent for a transit system. The Xcoop agent
and an associated mapper manager interact according to the Manager-
Agent design pattern, with events being handled by the Reactor pat-
tern. The agent contains the Xcoop MIB, a collection of 15 managed
objects implemented using the Managed Object, Template Method,
and Inherited Behavior patterns. The managed objects are grouped
using the Compositor pattern. An implementation of the Abstract Fac-
tory pattern is used to connect the agent with the manager and to
enable CMIP operations (implemented using the Remote Operation
and the Translator patterns). The manager sends M-GET requests to
the top object in the agent’s containment hierarchy with a scope des-
ignating the whole tree. When the agent receives such a request, it
uses a CScope object (an implementation of the Visitor pattern) to
enact the M-GET request in each and every managed object of the
MIB. Each managed object gives rise to an M-GET response message
back to the mapper manager, which sorts them out and uses that
information to display a map of the MIB.

In building this application, the managed objects’ specifications must
be written in GDMO and ASN.1. For implementing the managed
objects, the agent, and the manager, much of the code is supplied by
Layla, and only minor portions need to be defined by the developer,
mostly through subclassing.

Xcoop is a European ATM Pilot project.
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dle all the management
aspects of the system. Then,
the set of components is par-
titioned and brought under
the control of individual
Agents. The Agents take the
responsibility for a group of
related resources (functional
nature, logical relationship,
manufacturer, and so forth).
Each Agent represents the
whole subsystem under its
jurisdiction toward the Man-
agers. Each Manager will
interact with multiple
Agents within the system in
order to handle a given man-
agement task. Similarly,
each Agent can report to
more than one Manager.
This solution may be applied
recursively, in order to sim-
plify Agents that are in charge of large subsystems.
The Agents may then act as the local Managers of the
subsystems under their jurisdiction (see Figure 4, left).
The set of resources grouped under one Agent is a
Management Information Base (MIB). 

Applying the Manager-Agent pattern results in a
decoupling of the management policy from the system
being managed, with the policy being implemented
by the set of Managers. Management responsibilities
can be spread across multiple Managers, delegated to
subsystems (as part of an Agent’s functionality), or can
be a combination of both. In this way, a divide-and-
conquer approach can be applied to managing the sys-
tem, dividing the whole management task into a set
of smaller, more manageable subtasks.

The Manager-Agent pattern brings with it a num-
ber of benefits, but also some liabilities. On the posi-
tive side, the Manager and the Agent use a single
protocol to communicate. This encapsulates the pro-
prietary protocols used by the resources in the Agent
and simplifies the implementation of the Manager.
The Manager is thus able to communicate with any
and all the resources in the system, regardless of their
origin or nature. In this capacity, the Agent acts as a
large application of the Adapter pattern [3]. Further-
more, the hierarchy of the system is expressed through
the organization of the Agents. This means the Man-
ager does not need to maintain its own map of the sys-
tem, but can rely on the encapsulation provided by the
Agents. Modifications in one area of the system need
only be reflected in the relevant Agent, minimizing
the effect on the Managers that manage that area.

Finally, the Manager-Agent pattern can be seen as a
symmetrical variation of the client/server architec-
ture, where the Agent plays the role of the server and
the Manager that of the client. In traditional
client/server interactions, all the interactions origi-
nate from the client’s side, and not the server’s side. In
the Manager-Agent pattern, however, both agent and
manager can be the instigator of an interaction at any
time, either via a command going from a Manager to
an Agent, or via an alarm going from an Agent to a
Manager.

On the downside, each Agent adds a level of indi-
rection when the Manager needs to access the Agent’s
resources. The Agent, in order to accurately portray
the MIB, must either maintain a special internal data-
base or apply a set of translation rules every time a
request is made. In both cases, there is an added layer
of processing when accessing the managed resources,
and this layer can degrade performance when manip-
ulating large resource bases. Whichever mechanism is
selected, it needs to be implemented with care. As a
positive side effect, though, the Agent can encapsulate
vendor-specific details of the resources, furthering
interoperability in the system.

Note that the relationships between Managers and
Agents must be maintained adequately. One approach
is to have each Manager and Agent maintain their
own list of collaborating opposites, resulting in a
rather inflexible update scheme. Instead, the Mediator
[3] pattern may be used to maintain all these relation-
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ships. Alternatively, the Remote Operation pattern
may be used to provide location transparency. Yet
another approach is to use the Broker pattern dis-
cussed in [2]. In this article, we will only cover the
Remote Operation pattern, the solution we adopted
in Layla for its simplicity of implementation; before
doing so, we take a closer look at the Managed Object
pattern governing the MIBs.

Managed Object Pattern 
You need to manage a large collection of resource
entities. Each entity has an interface that may some-
what vary from the interfaces of the other entities,
resulting in a great number of different interfaces
with somewhat similar features. Such variation can
be caused by the nature of the entities, their manu-
facturers, and so on. In addition, there is often a hier-
archical and/or a containment relationship among
the entities being managed. The problem here is to
provide a unified interface for representing and con-
trolling the resources, while still allowing for a fine
degree of control. Although the resources may have
diverging interfaces, they need to be controlled in a
uniform way, and the relationships among them
should be taken into account. 

The proposed solution is to use an instance of the
Adapter pattern [3] for each individual Resource, in
order to translate its particular interface into one
shared by all Resource instances. We call this Adapter
a Managed Object. It enables management operations
to be performed using a single interface. The Managed
Object instances can then be aggregated using the
Composite pattern [3]. The composition is called a
MIB. It is sensitive to all the relationships that usually
exist among the Resource instances, such as hierarchy
and containment. The layout and interface of the MIB
follows a Specification that describes the content of the
MIB to the outside world (see Figure 4, right).

The result is a flexible structure that appropriately
mirrors the organization of the Resource instances and
that uses a single interface for the management of these
instances. An individual Resource can be located by
traversing the MIB (with the Iterator pattern and/or
the Visitor pattern [3]) and by applying operations on
the Managed Object’s interface. It will in turn apply
the corresponding operations to the Resource using
the appropriate interface. The Managed Object, repre-
senting the Resource being managed, supplants the
Resource’s specific interface with the interface that is
expected by the management system, and it imple-
ments management-specific operations such as the
VisitMe() operation in the Visitor pattern. The
MIB acts as a repository for all the management data
and functionalities of the system.

The Managed Object pattern offers a number of
benefits, but also some liabilities. On the positive
side, the MIB and the Managed Object instances offer
a single interface. This interface encapsulates the pro-
prietary protocols of the Resource and simplifies the
management of the system. A managing application
is then able to communicate with each and every
Resource in the MIB, regardless of its nature or par-
ticular characteristics. On the downside, the Managed
Object provides only indirect access to the Resources,
thus adding another level of indirection to the pro-
cessing of management operations. This might com-
promise the system’s performance, unless care is taken
to keep the overhead to a minimum.

Note that the Managed Object must offer an inter-
face that can gracefully support a large variety of pro-
prietary interfaces. It must allow for the access to
internal parameters and support the application of spe-
cific functions to the Resource. The Specification
should express the details of the MIB in a manner as
neutral and as precise as possible. In this way, the inter-
operability of the resource entities is ensured regardless
of their underlying source or implementation.

Remote Operation Pattern
In a distributed system such as a client/server system,
the client of an operation is often removed from the
location where that operation’s implementation actu-
ally resides. The client must then access the imple-
mentation through a communication network. The
problem here is to make a remote operation invoca-
tion appear exactly the same as a local operation invo-
cation, both to the client and to the implementation.
When attempting to solve this problem, the devel-
oper must deal with a number of conflicting forces.
For one thing, making a call across the network is
inherently more complex and less reliable than mak-
ing a call simply across a processor’s memory. Fur-
thermore, both the client and server the application
must be shielded from all network-specific details.

The proposed solution is to encapsulate all network
interactions in stub objects, both on the Invoker’s
(client) and the Performer’s (server) side. The Client
Stub and the Server Stub communicate with each
other using Connection and Message instances that
are specific to the network under consideration. The
Invoker and the Performer interact locally with their
respective Stubs (see Figure 5). The result is a system
where the invocation of a remote operation is decou-
pled from the network interactions needed to carry it
out. This solution, referred to as Remote Operation
pattern, can be seen as a refinement of the Proxy pat-
tern [3]. It further decouples the network interactions
from the Invoker and the Performer of the operation.
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The Remote Operation pattern brings with it a
number of benefits, but also some liabilities. On the
positive side, the Invoker and the Performer are
shielded from the network. Neither knows really if the
invocation actually took place across the network or
not. The Invoker doesn’t even know where the opera-
tion is actually performed. To the Invoker, the whole
business is no different from invoking a method on a
local object, in this case the Client Stub.

On the negative side, a remote invocation takes
longer than a local invocation. The time it takes to ful-
fill a remote invocation depends on the amount of
overhead in the Messages and the bandwidth of the
Connection. Furthermore, network errors may cause
Messages to be lost. Some error correction mechanism
is thus required to make the whole design more reli-
able. Also, it is hard to pass object references across
process boundaries. The Client Stub and the Server
Stub must handle pointers as well as object instances
in a way that the semantics of the operation are pre-
served. All this extra activity adds to the time required
to process a single remote operation.

Discussion
Layla’s pattern system illustrates the application and
refinement of the pattern catalog presented in [3] for
the NMI domain. Beyond this domain, the Layla
patterns are relevant in the realm of distributed sys-
tems in general [2]. The three key patterns discussed
here have been used in various contexts. The Man-
ager-Agent pattern can be found in both CMIS and
SNMP, and has been implemented in the OSIMIS
[8] framework. The Managed Object pattern is used
in CMIS as well, whereas in SNMP it occurs but in a
diluted form. The Remote Operation pattern, finally,
is being used in a number of interprocess protocols,
such as CMIP and the protocol suite for X.400
email. Other implementations include Sun’s and
HP’s remote procedure call libraries. Future OO
frameworks in the NMI domain such as JMAPI [6]
are likely to leverage these patterns, in case they
implement CMIS or SNMP.

The current version of Layla is the result of several
iterations, which seems to be quite typical for pattern-
based framework development. Our pattern mining
was definitely influenced by the NMI domain in that
the numerous standards and tools of this domain
inspired, and sometimes impeded, our work. And we
can but confirm the lessons learned from framework
development based on design patterns as reported
elsewhere, for instance in [5, 11].

Layla is conceived as a pattern-based application
framework. Its development demonstrates that pat-
tern-based frameworks can be built for the demanding

NMI domain. Experimentation with Layla makes us
believe that pattern benefits such as the flexibility,
reusability, and documentation value of the frame-
work and the resulting applications can indeed be
reaped. Our experience suggests the pattern-based
architecture of Layla makes NMI development consid-
erably easier. We contend the pattern system upon
which Layla is built will be helpful for other NMI
framework builders and for NMI application develop-
ers alike. 
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